Why Large Scale DFT Calculations?
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Advantages of Real-Space DFT (RSDFT) in Parallel Computing

Real space

— 4umm) Cpy space

Electron-state space

On multi-core parallel machines:
- Huge number of 3D mesh points divided into

> Almost free from FFT, reducing

- Each cell treated by a single node or core = high efficiency
- Also, electron states (orbitals) are grouped > Flexible boundar'y condition to

and each group is treated by a single node or :
a core : Hybrid parallelization wave-functions
- MPT for CPU and OpenMP for core = targets expanded

including charged objects
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High Performance Computing (HPC): Maximum Use of BLAS3 or Hit the Cachel

Solving Kohn-Sham Equation

[—%VZ T Vess (r.; n(r)) j| o) = & G, (rk)

Getting SCF by iterative computations

1. Conjugate gradient method

| O(N?2)

2. Ortho-normalization by Gram-Schmidt
method O(N 3)
3. Density and Potential update

g O(N ?)

O(N 3) operations, e.qg., Gram-Schmidt
should be accelerated!!

BLAS: Basic Linear Algebra Subprograms

Linear Algebraic Calculation

1. Inner product of vectors
N
A=) ab; BLAS Level 1
j=1

Computing =2N, Data=2N+1
2. Matrix times vector

A= Za.,, BLAS Level 2

Computlng 2N?, Data = N2+ 2N
3. Matrix times matrix

Za., « BLAS Level 3
Computlng 2N3, Data = 3N?

High ratio of (computing / data ) in BLAS3 has an
advantage in large-scale computations!!



Gram-Schmidt Ortho-normalization:

Maximum use of BLAS Level 3 O(N3) Computation

P =y On K computer,

96.6 % efficiency
using DGEMM to

the peak performance
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Most calculations can be performed as
Matrix x Matrix operations!
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RSDFT on K Computer at Kobe source

« QY
K compuder

» Benchmark Data for Si nanowires
— 107,292-atom LDA/GGA electronic-structure
calculations using 82,944 nodes
e 5.48 PFLOPS = 51.7% efficiency to the peak performance

e Single iteration in SCF = 2,900 sec

Side view
Gordon Bell Prize 2011

» LDA/GGA Run for 10,000-atom Systems
— Getting SCFields = one day using ~10%nodes with 34% - 70% efficiency
— Good strong scaling (78% - 88%) for 4,608 — 15,552-atom systems using 768 — 12,288 nodes

» HSE Calculations for 1000-atom systems
— Anti-ferromagnetic spin polarization along step edges of nanofacets in SiC

11114 "‘: ' Spin density by HSE
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